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A B S T R A C T   

This research explores an advanced method of fuel composition determination and builds upon typical hydro-
carbon group type analyses performed with two-dimensional gas chromatography (GCxGC). In this study, 
structural information of individual species within Virent’s Synthetic Aromatic Kerosene (SAK) is identified by 
vacuum ultraviolet (VUV) spectroscopy. By mass, 71.3% of the components elute within six peaks of the chro-
matogram, from which 12 unique species are identified through a novel deconvolution method. Overall, the 
identification of 93.6%m across 26 structural isomers is made by the methods described in this work. With 93.6% 
m ascribed to specific isomers, the precision of fuel property predictions improves dramatically. For example, the 
absolute error of the viscosity prediction is reduced by 90% because of this advancement in diagnostic capability, 
and its 95-percentile confidence interval (precision only) is reduced by 93%. Additionally, the properties of SAK, 
blended with hydro processed esters fatty acids (HEFA), are demonstrated to have blended properties consistent 
with conventional jet fuel.   

1. Introduction 

The reduction of anthropogenic emissions from the transportation 
sector has increased interest in recent years [1]. The aviation industry 
consumed ~ 400 billion liters of jet fuel globally in 2019, comprising ~ 
10% of greenhouse gas emissions from transportation [1–3]. Current 
predictions show flight demand doubling from 2010 levels by 2050 
[2,4], while simultaneously, airlines continue to pledge 50% or more 
carbon reductions by 2050 [2]. Sustainable aviation fuels (SAFs) have 
been identified as the most viable option to achieve these desired carbon 
displacements [5] to address the rising airline industry and environ-
mental goals. 

On December 1st, 2021, a potential 100% drop-in SAF composition 
powered one engine on a United Airlines 737 MAX 8 flew from Chicago 
to Washington D.C., marking the first passenger flight powered by a 
potential 100% drop-in SAF [6]. The plane was propelled on a fuel blend 
of (1) World Energy’s hydroprocessed esters fatty acids (HEFA) (ASTM 
D7566 A2) [7] and (2) Virent’s synthetic aromatic kerosene (SAK) 
blended at 79 %v and 21 %v, respectively. As the name suggests, SAK is 
composed primarily of aromatics, which from a compositional 

standpoint, sharply contrasts with the composition of several other 
qualified SAFs. Currently, SAK is the only SAF pathway undergoing 
commercialization to be composed of a majority aromatic content. Ar-
omatics are associated with higher non-volatile particulate matter 
(nvPM) or soot emissions, and nvPM is believed to be the primary 
nucleation source for aviation contrails [8]. Contrails, in turn, are sug-
gested to be the dominant radiative forcing agent of aviation instead of 
CO2 emissions alone [1]. However, not all aromatics are equivalent, 
with naphthalenes having higher sooting potentials [9]. Relatedly, there 
is broad interest in compositions within the SAF community that can 
remain ‘drop-in’ while minimizing nvPM. 

Fuels are required to have 8.4%v aromatics per ASTM D7566 to 
remain fungible with existing aircraft and infrastructure. This require-
ment, among others (e.g., density), often limits the amount of SAF that 
can be blended with petroleum-derived Jet A because SAF historically 
has no aromatic content. Alternative to Jet A blending, SAK provides an 
entirely sustainable option to achieve the aromatics requirement. The 
primary concern that aromatics address is material compatibility 
[10,11]. Aromatics offer higher density, enabling blending with lower 
density fuels such as HEFA and Alcohol to Jet (ATJ) [12], and poten-
tially a blended dielectric constant in line with conventional fuels. 
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Numerous low volume (<1mL) hydrocarbon compositional analysis 
methods reduce SAF scale-up risks and streamline the various qualifi-
cation processes [3,13–19]. Collectively, these technologies provide fuel 
producers with critical property predictions that can guide feedstock- 
conversion engineering at earlier technology readiness levels, thereby 
streamlining production and investment decisions. For example, a wet 
waste volatile fatty production process was recently guided in part by 
these analyses, leading to a fuel technology readiness level in less than 
one year, sufficient to support ASTM D4054 testing requirements [3]. 

Multidimensional gas chromatography is a relatively mature tech-
nology capable of separating analytes in complex solutions and remains 
common in the fuel characterization community. Superposing columns 
with a modulator between columns affords greater separations than 
those afforded through single-column configurations [13,18]. Kilaz 
et al. provide a complete review of various analytical techniques [13], e. 
g., flame ionization detection (FID), mass spectroscopy (MS), Fourier 
transform infrared spectroscopy (FTIR), nuclear magnetic resonance 
(NMR), and concluded that multidimensional chromatography offers 
the highest R2 for property relationship modeling. These GC × GC 
configurations require ‘stencil’ calibration using MS results and refer-
ence samples. Once calibrated, stencils can determine the boundaries of 
various hydrocarbon classes and carbon numbers [20]. However, even 
when coupled with MS detectors, stencil techniques cannot determine 
structural differences between most isomers [13]. VUV offers structural 
information; therefore, it has gained popularity in the food, forensics, 
environmental, and fuel research communities [18,21–24]. Gas chro-
matography techniques with VUV analysis have demonstrated the 
capability to identify structural and stereoisomers such as p-xylene, o- 
xylene, m-xylene [21], or the isomers of cis-decalin and trans-decalin 
[18], which have been indistinguishable by MS systems. 

Schug et al. explored the benchtop VUV detector in 2014 [21], 
suggesting its potential as a universal detector. Select species, separated 
from a gasoline sample, were resolved at the isomeric level in that work 
[21]. A later publication by Walsh et al. demonstrated the use of GC- 
VUV for hydrocarbon group type analysis (PIONA) of gasoline which 
was verified through various existing ASTM compositional methods 
[25]. However, in the case of a higher molecular weight jet fuel such as 
SAK, with higher isomerization, the second chromatographic dimension 
is necessary to separate analytes sufficiently. More recently, Wang 
explored a diesel fuel sample in a GCxGC-VUV configuration. Still, 
similar to Walsh et al. [25], the work was only concerned with group 

type analysis between cycloalkanes and alkenes rather than specific 
isomeric structures [26]. 

Property predictions from the compositional analysis have long been 
of interest within the fuel community [13,14,18,27]. Before Yang et al. 
[16], most fuel property predictions could be classified as ‘top-down’ 
approaches [19,28], where models are developed by regression of 
measured data, serving as both the independent and dependent vari-
ables. Such models risk extrapolating to non-physical results (regardless 
of the statistical method) and require substantial data to quantify un-
certainties [18]. Conversely, ‘bottom-up’ approaches [16,18,29] 
leverage composition data via GCxGC as one category of input and a 
library of property data corresponding to potential fuel constituents like 
the other category of input. These inputs are related to fuel properties, 
usually by physically based, verified blending rules [16–18,30]. While 
the blending rules afford confidence to extrapolate to compositions 
beyond the historical record, all such bottom-up models afford trace-
ability of errors, enabling a comprehensive uncertainty analysis [17,18]. 
The four sources of error that contribute to the uncertainty of pre-
dictions made by a bottom-up approach include the following: constit-
uent mass concentration measurement error from a chromatogram peak 
(possibly deconvoluted), assignment of chromatogram peaks to specific 
isomers, isomeric properties data uncertainty, and blending rule accu-
racy. This work addresses the precision of the chromatogram peak as-
signments to specific isomers, as well as the identification and 
deconvolution of chromatogram peaks comprised of up to 3 species. 

A contemporary SAF candidate (Virent SAK) is investigated with no 
prior knowledge of composition or properties, starting with GCxGC-FID/ 
VUV. Much of its composition (>71 %m) is found in coeluting peaks. 
Here, an isomeric identification approach is detailed with four novel 
contributions: (1) definitive determination of species count (one or more 
than one) within any peak on the chromatogram, (2) two-dimensional 
VUV deconvolution with up to three analytes, (3) greater than 93%m 
in a jet fuel is assigned to 26 specific isomers, and (4) precision 
improvement of property predictions. Previous coelution detection 
methodologies leverage the completeness of reference libraries [25,26], 
whereas the method presented here relies solely on the measured signal. 
This definitive pre-processing of peaks distinguishes single elution from 
coelution peaks and categorizes them based on the presence of multiple 
unique spectra within the same peak. Finally, material compatibility and 
dielectric constant calculations are reported for 79/21 %v HEFA/SAK 
blend, further documenting the potential of SAK as a keystone blend 

Nomenclature: 

Ai area percentage of ith peak per ChromSpace 
Aclass area percentage of all peaks within a hydrocarbon group or 

class per ChromSpace 
ASTM ASTM International 
ATJ alcohol to jet 
CI confidence interval 
FID flame ionization detector 
FTIR Fourier transform infrared spectroscopy 
GC one-dimensional gas chromatography or gas 

chromatography 
GCxGC two-dimensional gas chromatography 
HEFA hydro processed esters fatty acids 
LHV lower heating value or heat of combustion 
m modulation number 
MS mass spectroscopy 
n representative (average) modulation 
nvPM non-volatile particulate matter 
NIST National Institute of Standards and Technology 
NJFCP National Jet Fuel Combustion Program 

NMR nuclear magnetic resonance 
PIONA paraffins, iso-paraffins, olefins, naphthenes, and aromatics 
QSPR quantitative structure property relationships 
r2 correlation coefficient squared 
R2 coefficient of determination 
SAF sustainable aviation fuel 
SAK synthetic aromatic kerosene 
T temperature 
TSI threshold sooting index 
VUV vacuum ultraviolet light 
Yi mass percentage of ith analyte 
%m mass percentage 
%v volume percentage 
δ fixed time interval over which absorbance was averaged 
ρ density 
σ surface tension 
σYi analyte quantification uncertainty 
σz root property data uncertainty 
σisomer isomeric uncertainty  
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component for potential 100% SAF. 

2. Methodology 

A GC × GC-FID/VUV method was employed to identify the hydro-
carbon species in SAK, similar to the method used in Heyne et al. [18]. 
This work builds on that methodology by adding deconvolution capa-
bilities, dramatically reducing predictive uncertainty due to isomeric 
information, and compares them to predictions done with traditional 
hydrocarbon group type information [16]. 

2.1. Reference samples 

The SAK fuel sample was provided courtesy of Virent, Inc, and the 
HEFA fuel sample was provided by World Energy. Additional materials 
that composed the majority of the SAK were procured to predict SAK 
properties more accurately and characterize the mixture further. A 
summary of measured properties for each component can be found in 
Tables 2 and 3 in the Supplementary Material. Three reference fuels 
from the National Jet Fuel Combustion Program (NJFCP) [27,31,32], A- 
1 (POSF 10264), A-2 (POSF 10325), and A-3 (POSF 10289), were also 
analyzed via GC × GC-FID/MS and used as an aromatic benchmark for 
several temperature-independent properties. 

2.2. Gas chromatography, flame ionization detector, and vacuum 
ultraviolet light detector 

The experimental setup was arranged as GCxGC-FID/VUV, where the 
VUV system supported the hydrocarbon isomeric identification and the 
FID supported quantification. The system included two columns sepa-
rated by a modulator connected to a split plate after the second column, 
where the analytes were directed to either the FID or the VUV. The 
system included a SepSolve INSIGHT flow modulator and VGA-101 
Vacuum Ultraviolet light detector. A graphical overview of the 
GCxGC-FID/VUV is displayed in Fig. 1, illustrating the major compo-
nents of the GCxGC-FID/VUV system. 

The Agilent 7693A Automatic Liquid Sampler (ALS) injected 5 μ L of 
sample into the Agilent 8890 GC. The inlet temperature, pressure, and 
split ratio were maintained at 250 ◦C, 55.04 psi, and 100:1, respectively. 
A reverse column arrangement was chosen to achieve the desired sep-
arations for this study. Specifically, in their respective order, a Rxi-17Sil 
MS 60 m × 0.32 mm × 0.5 μm and Rxi-1 15 ms × 0.32 mm × 0.5 μm 
columns were utilized, both of which were manufactured by Restek. 
Constant flow rates for the first and second columns of 1.2 mL/min and 
48 mL/min were held throughout the run with a Helium carrier gas 
(grade 5.0), which passed through a Restek Triple Filter before entering 

the GC system. The GC oven was initialized at a temperature of 40 ◦C for 
30 s, with a ramp rate of 1 ◦C / min until achieving a final temperature of 
280 ◦C, where the temperature was held for 10 min. The GC ran for a 
total time of 250.5 min. Two modulation times and injection volumes 
were used. A 10-second modulation time with 5 μ L injection and a 5-sec-
ond modulation time with 1 μ L injection was employed. The combi-
nation of long modulation times and high injection volumes enabled 
higher concentrations of trace analytes to be identified. In comparison, 
the shorter modulation time and lower injection volume facilitated 
deconvolution of peaks with high concentrations. 

As mentioned previously and demonstrated in Fig. 1, the analyte is 
divided at the split plate after traveling through the secondary column. 
One of the lines leaving the split plate junction feeds the FID, where flow 
rates are applied to the air (ultra-zero grade) flow, H2 (grade 6.0), and 
N2 (grade 5.0) at flow rates of 400, 40, and 25 mL/min, respectively. The 
FID operated at a fixed temperature of 300 ◦C while recording data at a 
frequency of 50 Hz, which was processed by INSIGHT ChromSpace 
software (Version 1.5.1). 

As illustrated in Fig. 1, a second line parts from the split plate and 
directly connects to the VGA-101 transfer line. The sample was prefer-
entially directed to the VUV detector relative to the FID. The length of 
the internal transfer line from the split plate to the VUV was shorter than 
the transfer line from the split plate to the FID to increase the amount of 
sample directed to the VUV. The transfer line from the GC to the flow cell 
was maintained at 250 ◦C. With N2 (grade 5.0) being used as the system 
gas, data acquisition continuously occurred at 76.92 Hz over a wave-
length range of 125 to 430 nm. 

2.3. Identification and Quantification: 

The overall identification procedure includes the following steps: 
timestamp alignment between FID and VUV, removal of oversaturated 
VUV data, local background signal subtraction and noise reductions, 
coelution screening, identification of analyte(s) in the considered peak, 
and conversion to mass fractions. Each step of the procedure described 
above leveraged in-house Python (Version 3.8.5) code. 

2.4. FID and VUV alignment 

Synchronization of the FID signal to the VUV signal was completed 
by aligning the max signal for each peak across the experiment duration. 
A single offset value could be found and applied to the entire VUV 
dataset by minimizing the offset between the local maxima found with 
the separate detectors. With the offset applied, SepSolve ChromSpace 
FID area determinations were associated with the identified analytes 
and VUV data. 

Fig. 1. GC × GC-FID/VUV Test Setup Diagram.  
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2.5. Analyte identification 

Pre-processing of VUV spectra included screening for oversaturation. 
Then local background subtraction and signal averaging, akin to the 
approach described in Lelevic et al. [33] and Heyne et al. [18], were 
done to attain the sample spectra used for matching against cataloged 
reference spectra. Single analyte identification followed the work dis-
cussed in Heyne et al. [18]. 

Determination of species count (one or more than one) within each 
peak on the chromatogram was the final pre-processing step. Prior state- 
of-the-art techniques [25] relied on the quality (e.g., R2) of a multiple 
species match significantly exceeding that of the top single species 
matches to confirm or reject the presence of coelution. This work shows 
how this determination can be established prior to any matching exer-
cise, eliminating reliance on spectral reference libraries’ completeness. 
This insight is instrumental in downstream steps. For example, by 
demonstrating that given sample spectra originates from a single spe-
cies, subsequent comparison to reference spectra will either identify the 
most probable match or prove that the observed sample spectra are not 
present in the reference library. Without first proving that sample 
spectra originated from a single species, any number of linear combi-
nations of multiple spectra in the reference library could (incorrectly) 
meet the acceptable match criteria. Conceptually, the coelution check is 
done by comparing sets of spectra that are each averaged over the full 
width of one retention time axis (i.e., t1 or t2) and segments of the other 
retention time axis. If the spectral profile is static while sweeping 
through the segmented time axis, in both dimensions, the peak is 
comprised of a single analyte. If the normalized spectra change while 
traveling across the chromatogram peak, it is known to be comprised of 
multiple analytes. 

For chromatogram peaks consisting of more than one species, the 
sample VUV spectra at each point in time (t1, t2) within that peak were 
matched by a linear combination of 2 or 3 reference spectra, leveraging 
the non-negative least-squares optimization algorithm from Python 
SciPy, maximizing R2. The decision logic around which 2 or 3 reference 
spectra to use as the basis functions was partially manual, with the goal 
being to select the ones that yielded the best overall match throughout 
the peak. The overall concentration of each analyte was determined by 
summing the product of the reference spectra scale factors at each time 
point with the mass fraction attributed to each time point, where the 
integrated areas of sample VUV spectra were used to determine the mass 
fraction at each time point. 

2.6. Quantification 

Hydrocarbon type analysis was performed by generating a stencil 
with a method like the one described by Vozka et al. [34]. Chromato-
gram peak areas of each peak (Ai) were determined through the 
ChromSpace integration software and attributed to corresponding hy-
drocarbon groups (Aclass) based on retention time, where the FID signal 
serves as the z-axis (or the color scale). Previous research [16–18] has 
leveraged the well tested template from Striebich et al. for hydrocarbon 
group type mass fraction determinations [20], as were the mass fractions 
(Yi) presented herein. To arrive at a single species mass fraction, the 
group mass fraction per the Striebich et al. template (Yclass) was scaled 
by the area percentage of the selected peak (Ai) relative to the total area 
(Aclass) of the respective hydrocarbon group. Repeatability for hydro-
carbon class quantification is taken as RSD% <1.5% (n = 3), as reported 
in a recent repeatability study [35]. 

Yi =
Ai

Aclass
*Yclass  

2.7. Property measurements 

Threshold Sooting Index (TSI) values of each species identified in the 

report were estimated via the QSPR model of Boehm et al. [9], and the 
blending rule detailed in that report was used to predict the TSI of SAK. 
An o-ring volumetric swell study was performed with optical dilatom-
etry techniques described in Faulhaber et al. [36]. Here, two 
acrylonitrile-butadiene o-ring materials were submerged at room tem-
perature into separate fuel-filled vials. The first contained neat HEFA, 
and the second had a 79/21 %v HEFA/SAK blend. Refractive index 
measurements were taken at room temperature using a Reichert TS 
Meter. These measurements were taken with a light emission source at 
589 nm and converted into dielectric constant values for neat HEFA, 
SAK, and the 79/21 %v HEFA/SAK using K = n2 (K is dielectric constant, 
n is refractive index). The accuracy of the Reichert TS Meter was +- 
0.0001 nD. Other properties such as flash point, freeze point, viscosity, 
density, and surface tension, were experimentally determined for 
several samples using aviation fuel specification tests [7]. Both the 
ASTM methods’ names and corresponding repeatabilities and re-
producibilities are listed in Table 1 of the Supplementary Material and 
serve to evaluate the accuracy of the predictions. [9]. All other prop-
erties required but not measured for this study were sourced by the NIST 
Web Thermo Tables [37]. 

2.8. Tier Alpha approach for property predictions 

The Tier Alpha approach for property predictions employs three 
different pieces of information: empirically derived algebraic blending 
rules, an extensive database of pure molecules, and the best available 
composition data. Where composition data is limited to hydrocarbon 
group level mass concentrations, a random selection of a representative 
member of that group is made as part of a Monte Carlo simulation that 
also includes uncertainties in determining mass fractions and database 
properties. By far, the largest source of uncertainty (precision) in these 
determinations has been, until recently [18], the underdetermined 
speciation within each of the hydrocarbon groups [17]. The coupling of 
VUV spectroscopy with GCxGC-FID chromatography addresses this 
primary source of property prediction uncertainty, and now, with this 
work, advances in sampled VUV spectra deconvolution further attack 
this primary source of property prediction uncertainty. With these 

Table 1 
Summary of the identification results organized by hydrocarbon groups. Iden-
tified species are listed along with their corresponding chromatograph peak 
labels in Fig. 3.  

Group Type Species Name Labels %Mass 

C9 Cycloaromatics indane p  0.799 
C8 Alkylbenzenes p-xylene b*  0.384 

m-xylene b*  1.274 
ethylbenzene a  0.181 
o-xylene c  1.844 

C9 Alkylbenzenes 1-methyl-3-ethylbenzene f*  20.604 
1-methyl-4-ethylbenzene f*  10.879 
1,3,5-trimethylbenzene f*  0.148 
1,2,4-trimethylbenzene h*  26.686 
Isopropyl benzene d  0.275 
n-propylbenzene e  1.92 
1-methyl-2-ethylbenzene g  1.356 
1,2,3-trimethylbenzene l  0.163 

C10 Alkylbenzenes sec-butylbenzene i*  0.156 
1,3-diethylbenzene m*  4.445 
1-methyl-3-n-propylbenzene m*  3.213 
1-methyl-4-n-propylbenzene m*  1.535 
1,3-dimethyl-5-ethylbenzene n*  1.122 
1,4-diethylbenzene n*  0.811 
1-methyl-3-isopropylbenzene j  0.739 
1-methyl-4-isopropylbenzene k  0.332 
1-methyl-2-n-propylbenzene o  0.145 
1,4-dimethyl-2-ethylbenzene q  0.678 
1,3-dimethyl-4-ethylbenzene r  2.443 
1,2-dimethyl-4-ethylbenzene s  10.089 
1,2,4,5-tetramethylbenzene t  1.36  
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improvements, blending rule accuracy, rather than prediction precision, 
maybe the largest source of overall prediction uncertainty for some 
properties of some hydrocarbon mixtures with volatility within the jet 
fuel range. A flow chart describing this process is provided in Fig. 2 to 
help conceptualize the details of this approach. 

3. Results and discussion 

3.1. Identification results 

The hydrocarbon group type analysis from the GCxGC chromato-
graph template classifies 93.2 %m into three alkylbenzene bins; C8 
(3.7%m), C9 (62.0 %m), and C10 alkylbenzenes (27.5%m). Other minor 
fractions are distributed across C9 (0.8 %m) and C10 cycloaromatics 
(1.2 %m), along with various cycloalkane and iso-alkane groups, each <
1.5%m, across a carbon range of C8 to C10. While that approach clas-
sifies analytes into a specific hydrocarbon group, this study aims to 
further separate the group mass fraction into isomer-specific fractions 
using VUV data. Illustrated in Fig. 3, the SAK chromatograph has been 
labeled with English letters to inform which peaks were identified using 
the VUV detector. These English letters, summarized in Table 1, delin-
eate 26 isomers along with their mass fractions amounting to 93.6 %m of 
the SAK sample. All possible isomers of C8 and C9 alkylbenzenes are 
identified. In contrast, C9 cycloaromatics and C10 alkylbenzenes include 
incomplete isomer identification due to some peaks having a low signal 
to noise or due to detected isomers not matching against the available 
reference data. All fractions from the hydrocarbon group type analysis 
that were not identified on the isomeric level have been summarized in 
Table 4 of the Supplementary Material. 

The two most prominent analytes present in SAK are 1-methyl-3-eth-
ylbenzene and 1,2,4-trimethylbenzene, 20.6%m and 26.7 %m, respec-
tively. Conversely, 1-methyl 2-n-propyl benzene (0.15 %m) and 1,3,5- 
trimethylbenzene (0.15 %m) are the smallest identifiable fractions. All 
peaks comprising at least 0.68%m of the SAK sample were identified by 
matching their corresponding VUV spectra with reference spectra in our 
library; R2 greater than 0.999. At lower analyte concentration, the R2 

between sample and reference spectra of the same species decreases due 
to the low signal-to-noise ratio of the sample spectra. For 1-methyl 2- 
propylbenzene, the R2 was 0.978. 

The VUV performed excellently in the hydrocarbon group regions 
where the reference library was completely defined for all isomers in 
that hydrocarbon class and carbon number. Conversely, limitations 

persist in identifying analytes in regions with poor or incomplete library 
spectra. This is especially true in higher SAK MW regions (>C10), where 
known possible isomers exponentially increase. For example, two 
prominent cycloaromatic peaks (lower right diagonal of the chromato-
gram peak ‘s,’ Fig. 3) are not identified beyond the hydrocarbon group 
type analysis. Conversely, all C8, C9, and C10 alkylbenzene isomer 
spectra are present within the reference library, enabling comprehensive 
identifications. Additionally, as demonstrated by Lelevic et al., lower 
carbon number alkylbenzenes exhibit higher absorption (higher 
response factor) relative to other hydrocarbon class species. Alkanes, in 
contrast with low molecular weight alkyl benzenes, require higher 
molar concentrations for equivalent identification fidelity [38]. 

3.2. Two-Dimensional deconvolution 

Paramount to the success of identifying isomers in SAK is deconvo-
lution capability. Coeluting species are marked with an asterisk (*) next 
to their peak letter label in Table 1. Collectively, 71.3 %m is contained in 
6 peaks that required deconvolution, while 22.3 %m contained in 14 
peaks did not require deconvolution. Nearly half of the identified iso-
mers in this analysis required deconvolution for identification. 

Fig. 4 illustrates the deconvolution analysis of the most prominent 
peak in the SAK sample (labeled ‘f*’ in Table 1 and ‘f’ in Fig. 3). The bulk 
mass fraction of the peak is determined to be 31.6 %m of the total SAK 
composition. Namely, 1-methyl-3-ethylbenzene, 1-methyl-4-ethyl-
benzene, and 1,3,5-trimethylbenzene are found in this peak. The ma-
jority of this peak (99.54%m) is comprised of 1-methyl-3-ethylbenzene 
and 1-methyl-4-ethylbenzene. Also, 1,3,5-trimethylbenzene is found in 
low concentrations here, 0.15%m total SAK mass or 0.46%m of the peak, 
respectively. Linear combinations of the scaled reference spectra for the 
three analytes of interest here achieve an R2 greater than 0.999 at each 
timestamp reported. 

The analytes at peak ‘f’ in Fig. 3 exhibit a saturated VUV signal 
(absorbance exceeding 1.0) at some wavelengths, making its deconvo-
lution less rigorous. To avoid that complication, the reduced injection 
volume method as described in the method section was applied. Fig. 4 
illustrates a blow-up of this peak after applying the reduced injection 
volume method. In contrast to Fig. 3, the image shown in Fig. 4c is from 
the VUV signal rather than the FID signal. 

Fig. 4a and 4d report the relative absorbance of 1-methyl-3-ethylben-
zene and 1-methyl-4-ethylbenzene. Mathematically the absorbance 
signatures are dramatically different and distinguishable. The first 

Fig. 2. Illustration of the ‘Tier Alpha’ approach, including identification and quantification (a), component property data (b), and mixture property determinations 
(c). Deconvolution is depicted with a bold black outlined box. 
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dimension of separation, t1, is the recorded time corresponding to the 
modulation number, ‘m,’ at a given analyte entered the secondary col-
umn. The second dimension, t2, corresponds to the detection time in the 
VUV for a given modulation. Fig. 4a illustrates the relative mass frac-
tions of 1-methyl-3-ethylbenzene (dashed black lines) and 1-methyl-4- 
ethylbenzene (solid blue lines) over a given modulation index (‘m’). 
Fig. 4d compares the relative mass fractions of 1-methyl-3-ethylbenzene 
and 1-methyl-4-ethylbenzene for selected bins of t2 values, with ‘n’ 
representing the first bin, and δ representing the width of each bin over 
t2 for which absorbance was averaged. By parsing out the concentrations 
of each analyte across all of the peak timesteps, the accuracy of the 
aggregate concentrations (across the whole peak) improves. Further-
more, it is possible to detect the presence of minor peak concentrations, 
that are otherwise unidentifiable if looking at the average signal or 

summed signal of the entire peak, e.g., this deconvolution method re-
veals the presence of 1,3,5-trimethylbenzene at the low concentration of 
0.15 %m. 

3.3. Fuel properties 

Two sets of predictions, derived from our ‘Tier Alpha’ [16] meth-
odology, are made and compared with laboratory measurements. In one 
set of predictions (‘Tier Alpha + VUV’), the information conveyed in 
Table 1 is utilized in the calculations. For the other set of predictions 
(‘Tier Alpha’), the total mass fraction of each hydrocarbon group type is 
randomly assigned to a specific isomer of the group in a Monte Carlo 
simulation. Either way, the properties of each specific component in the 
mixture-as-modeled are necessary input. The following mixture 

Fig. 3. FID chromatograph (5 μ L and 10 sec modulation time) with provided letters that correspond to identified species laid out in Table 1. The RGB color scheme is 
used where blue is low signal intensity (or concentration), and red is high signal intensity (or concentration). (For interpretation of the references to color in this 
figure legend, the reader is referred to the web version of this article.) 

Fig. 4. An illustration of the relative masses across peak ‘f’ (Fig. 3), determined through two-dimensional deconvolution (a and d) of 1-methyl-3-ethylbenzene 
(dashed black line) and 1-methyl-4-ethylbenzene (solid blue line). Subplots (c and d) depict the integrated VUV signal as a chromatographic peak and the 
normalized reference spectra of each species, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version 
of this article.) 
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properties were measured and/or predicted in this work: surface tension 
at 22 ◦C, lower heating value (LHV), flash point, threshold sooting index 
(TSI), smoke point, freeze point, density as a function of temperature, 
and viscosity as a function of temperature, seal swell, and dielectric 
constant at 22 ◦C. 

Several temperature-independent property results are presented in 
Fig. 5. Measurement data is represented by black-filled circles and lines. 
Predictions without (Table 1) isomer specificity are represented by blue 
open triangles and lines. Predictions that leverage the data presented in 
Table 1 are represented by red open circles and lines. Uncertainties for 
each determination are represented with 68 % confidence intervals (CI), 
solid lines, and 95 % CI, capped dashed lines. The accuracy of the 
applicable blending rule is not captured in the displayed confidence 
intervals. The green shaded region is derived from the aromatic fraction 
of the three reference fuels from the NJFCP: A-1 (POSF 10264), A-2 
(POSF 10325), A-3 (POSF 10289). They are each the union of three 95% 
CIs as determined by the ‘Tier Alpha’ predictions, and the green regions 
are intended to provide an additional context of where property values 
typically lie for the aromatic fraction of conventional fuels. 

As evident in Fig. 5, the confidence intervals (precision) of the pre-
dictions are markedly decreased when 93.6%m is attributable to specific 
isomers, which is not surprising since isomer uncertainty has been 
previously identified as the leading source of uncertainty in ‘Tier Alpha’ 
predictions when mass concentrations are lumped by hydrocarbon 
group [17,18]. With the improved prediction precision via specific iso-
mer identifications, the prediction accuracy can be assessed more 
clearly. In these examples, however, the confidence intervals of the 
measurement overlap with those of both sets of predictions. Essentially 
no change in prediction accuracy is observed. The small shift in the 
prediction mean of LHV is consistent with the expectation that actual 
population distributions of isomers within any given hydrocarbon group 

are skewed toward lower heats of formation, not uniform [17]. The 
larger shift in the prediction mean of surface tension (σ) as well as the 4- 
5x improvement in the prediction precision underscores the value of the 
greater specificity of species identification afforded by the GCxGC-FID/ 
VUV method relative to other separation methods where the analytes 
cannot be interrogated by a spectrographic method, such as VUV. The 
offset between the two mean surface tension predictions is due largely to 
the difference between the actual population distribution of C9 alkyl-
benzenes (accounting for 62.02 %m of the sample SAK) relative to a 
presumed uniform population distribution of these isomers. The mass 
fraction weighted average surface tension of the C9 alkylbenzenes is 0.9 
mN/m less than the average surface tension of the C9 alkylbenzenes bin. 

Viscosities and densities for SAK are illustrated in Fig. 6 over a 
temperature range important to the safe operation of jet engines [27]. 
Specifically, Fig. 6 includes SAK measurements, black circles, ‘Tier 
Alpha’ predictions without Table 1 inputs (blue lines), and ‘Tier Alpha 
+ VUV’ predictions with Table 1 inputs (red lines). Uncertainty regions 
for each of the predicted methods are also included, where the light 
regions represent the 95% CIs, and the darker shaded regions represent 
the 68 % CIs. Device-reported uncertainties are also reported with error 
bars but are mostly masked due to scaling. Viscosity predictions, with 
Table 1 inputs, outperformed the standard ‘Tier Alpha’ by achieving 
reductions of 90% and 93% for mean error and 95 % CI, respectively. 
For density, mean error and 95 % CI reductions of 75 % and 89 % are 
observed, respectively. These accuracy and precision improvements are 
credited to the removal of the isomeric uncertainty gained by identifying 
the specific isomers that comprise more than 93%m of the SAK sample. 
The tier alpha method with either set of inputs, applied to viscosity, 
demonstrates better agreement with experimental data between 0 ◦C 
and 20 ◦C than they do below 0 ◦C. For viscosity, a portion of the error at 
the lower temperatures is due to error imparted through extrapolation 
(ASTM D341)[39] to lower temperatures than those available through 
NIST Thermo Tables [38]. This decrease in predictive accuracy between 
0 ◦C and 20 ◦C was also observed in Heyne et al. [18]. The temperature 
sensitivity of density (Δρ/ΔT) is well captured by ‘Tier Alpha + VUV’ 
(with Table 1 inputs); deviating from the data by just 0.39%. A full 
tabulation of the neat material property measurements is available in 
Tables 2 and 3 of the Supplementary Material. 

High carbon balance can be achieved with the techniques described 
in Section 2. The VUV absorption spectra for all known structural iso-
mers of the major aromatic regions in this study (C8, C9, and C10 
alkylbenzenes) were fully catalogued in our reference spectra library, 
thus eliminating concerns of encountering a false-positive match. 
Generally, as reference libraries become more complete at higher carbon 
numbers and other hydrocarbon types, the analysis demonstrated here 
will illuminate even more complicated and heavier fuels. To date, 
however, incomplete spectra libraries are relevant in instances of higher 
carbon numbers. For example, the two peaks to the lower right of 1,2- 
dimethyl-4-ethylbenzene (peak ‘s’) in Fig. 3 are unable to be resolved, 
likely due to incompletely catalogued VUV reference spectra for C10 
cycloaromatics. 

3.4. HEFA/SAK blend and HEFA properties 

As mentioned in the introduction, aromatics facilitate compliance 
with several key properties, including material compatibility and 
dielectric constant. Compositions that are non-compliant with these two 
additional constraints, or any other fit-for-purpose or spec’d property 
(ASTM D7566), are not viable candidates for a 100% synthetic SAFs. 
Fig. 7 reports the o-ring swelling, calculated dielectric constant values, 
and other important operability properties for a 79/21 %v HEFA/SAK 
blend and neat HEFA and neat SAK where available. Consistent with 
previous plots, the measurements (filled symbols) and uncertainties 
(error bars) are reported. These values are compared against a con-
ventional fuel range (shaded green) and the specification limits (red 
lines and shaded regions) described in ASTM D7566 [7]. The blended 

Fig. 5. Comparison of predictions of ‘Tier Alpha’ (blue symbols and lines) to 
‘Tier Alpha + VUV’ (red symbols and lines) in relation to nominal values 
determined through direct property measurement under ASTM standard 
methods. Conventional fuel (Jet A - only aromatic components) 95 % CI plotted 
as well in light green for reference. (For interpretation of the references to color 
in this figure legend, the reader is referred to the web version of this article.) 
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HEFA/SAK composition is within the observed range of conventional 
fuels for each property considered in this work. Interestingly, the vis-
cosity of the HEFA/SAK blend is significantly lower than the typical 
viscosities of conventional fuels. This is advantageous to engine opera-
bility as low viscosity often leads to finer and more uniformly distributed 
sprays at engine operating conditions that are consistent with altitude 
relight, ground start, and transitions in or out of flight idle [40,41]. 
Specifically, both the volume swell (12.3%) and predicted dielectric 
constant (2.096) are within the conventional fuel range. 

4. Conclusions 

A carbon balance greater than 93%m consisting of 26 separate 
analytes was identified in a relevant SAF (SAK) candidate. Of these, 
73.1%m relied on the deconvolution method described herein. With 
added specific isomeric information, confidence in the property pre-
dictions improves relative to predictions predicated on conventional 
hydrocarbon group type analysis. Most notable, viscosity absolute error 
is reduced by 90% and 95-percentile confidence interval is reduced by 
93%. For the properties measured, a HEFA/SAK blend illustrates a path 
for 100% SAF to remain drop-in for additional aviation properties (o- 
ring swelling and dielectric constant), while reducing nvPM with high 
relative aromatic contents and exhibiting other advantaged properties. 
Approximately 50%m of a typical conventional Jet-A is composed of in 
44 peaks, meaning the limit of detection for a VUV is not the limiting 
factor in using it for property evaluations. While the number of analyte 
spectra is the limiting bottleneck in GCxGC-VUV to property predictions, 
the potential for this method remains exceptionally high. 
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Fig. 6. Predictions of viscosity and density with respect to temperature for Tier Alpha (blue line and shaded region) and Tier Alpha + VUV predictions (red line and 
shaded regions) in relation to measurement (black data points). (For interpretation of the references to color in this figure legend, the reader is referred to the web 
version of this article.) 

Fig. 7. Selected ‘fit for purpose’ operability property 
measurements (black symbols) with measurement 
error (black lines), along with o-ring volume swell 
percentage and dielectric constant for 79/21 HEFA/ 
SAK blend. Neat HEFA (yellow symbol and line) and 
neat SAK (blue symbol and line) are plotted. Con-
ventional Jet Fuel (shaded green) and ASTM D7566 
(shaded red) illustrate compliance. (For interpretation 
of the references to color in this figure legend, the 
reader is referred to the web version of this article.)   
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Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.fuel.2022.125002. 
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